Indian Statistical Institute, Bangalore. Mid-semester Exam : Measure-theoretic Probability

Instructor : Yogeshwaran D.

15th September, 2017

Max. points : 30.

Time Limit : 3 hours.

Answer any three questions only.

Give complete proofs. Please cite/quote appropriate results from class or assignments properly. You are also allowed to use results from other problems in the question paper.

- 1. Let μ be a non-negative and finitely additive set function on a semiring \mathcal{A} with $\mu(\emptyset) = 0$. Let A, A_1, \ldots, A_n be sets in \mathcal{A} . Show the following.
 - (a) If A_i are disjoint and $\bigcup_{i=1}^n A_i \subset A$, then $\sum_{i=1}^n \mu(A_i) \leq \mu(A)$. (4)
 - (b) If $A \subset \bigcup_{i=1}^{n} A_i$, then $\mu(A) \leq \sum_{i=1}^{n} \mu(A_i)$. (4)
 - (c) Without using the semi-ring extension theorem, show that μ is countably additive iff μ is countably subadditive. (2)
- 2. (a) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Show that $\mathcal{A} = \{A : \mu(A) < \infty\}$ is a semi-ring and closed under finite unions. Is \mathcal{A} an algebra ? (5).
 - (b) Let $(\Omega_j, \mathcal{F}_j)_{j=1,\dots,n}$ be measurable spaces. Fix $(x_1, \dots, x_n) \in \prod_{i=1}^n \Omega_i$ and $B \in \bigotimes_{i=1}^n \mathcal{F}_i$. Show that for all $1 \leq j \leq n$, the sets $\{(y_1, \dots, y_j) \in \prod_{i=1}^j \Omega_i : (y_1, \dots, y_j, x_{j+1}, \dots, x_n) \in B\}$ are $\bigotimes_{i=1}^j \mathcal{F}_i$ -measurable. (5)
- 3. Let $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ be a measure space and set $a_n := \mu(\{n\})$. Let $f : \mathbb{N} \to \mathbb{R}$. Show that $\sum_n f(n)a_n = \int f d\mu$ whenever either one of them is well-defined. (10)
- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f_n : \Omega \to [0, \infty], n \ge 1$ be a sequence of simple functions such that $f_n \uparrow f$ pointwise. Show that $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$. (10).
- 5. (a) Let (Ω, \mathcal{F}) be a measurable space with $\mathcal{F} = \sigma(\mathcal{A})$ where \mathcal{A} is a semi-ring and further let Ω be a countable disjoint union of \mathcal{A} sets. Let μ, ν be measures on (Ω, \mathcal{F}) such that for all $A \in \mathcal{A}$, we have that $\mu(A) \leq \nu(A) < \infty$. Then show that $\mu(B) \leq \nu(B)$ for all $B \in \mathcal{F}$. (5)
 - (b) Let μ be a set function on the semi-ring $\{(a, b] : -\infty < a \leq b < \infty\}$ such that $\mu(a, b] = b a$. Show that the outer measure $\mu^* : 2^{\mathbb{R}} \to [0, \infty]$ is translation invariant i.e., for any $A \subset \mathbb{R}$ and $x \in \mathbb{R}$, $\mu^*(A + x) = \mu^*(A)$. (5)